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Abstract: Transfer function-noise (TFN) modelling is often applied v analyse groundwater time series. A
TFN model relates a specific output variable (in this case groundwater head) to one or more input variables
(e.g. precipitation), using some linear relation {transfer function). During the identification and construction
stage of model development, an appropriate modelling interval has to be chosen. Up to now, the standard
procedure has been to set the modelling interval equal to or targer than the measuring interval. However, it is
probably more accurate to choose a smailer modelling interval, depending on the time scale of the
hydrological processes. This paper investigates the influence of the modelling inlerval as well as the
measuring interval (i.e. the interval of the output series) on the performance of TFN madels, using a state
space representation of a TFN model. For this purpose, groundwater time series are generated and modelled
several times, varying the measuring interval as well as the modelling interval. The results of this study show
the refationships between the time scale of several hydrological processes on the one hand and the level of
detail and accuracy of the time series model on the other hand.
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1 INTRODUCTION the interval of the input series). Up to now, the

standard procedure has been to set the modelling
Transfer function-noise (TFN} models [Box and interval equal to or larger than the measuring

- Jenkins, 19701 of hydrological-systems-have-been - -interval-of the putput-variable-[van-Geer-and-Zotr; -

used for many years. Some important applications 19971, Such a model is satisfactory as long as the
are modelling of river flow {Young et al., 1997], time scale of the underlying process is at least of
trend assessment of groundwater time series the same order of magnitude as the modelling
{Gehrels et al., 1994], and intervention modelling interval. However, this is often not the case. For
for use in environmental impact assessment [Hipel example, in the Netherlands groundwater head is
and McLeod, 1994]. A TFN model relates a measured twice monthly, while in several parts of
specific output variable to one or more input the country the response time of the groundwater
variables, using some linear refation (transfer system to precipitation excess is less than 14 days.
function). The residual series is described by a Consequently, for many purposes such models will
univariate time series model, ¢.2. an autcregressive not be able to describe the hydrological system
moving-average {(ARMA) model. A  major satisfactorily, Therefore, this study seeks to
advantage of TFN models over physical models is analyse the influence of a decrease in the
that, apart from the hydrolegical time series, no modelling interval on the performance of TEN
other data is needed. Besides, physical models are models. In addition, the relation between the
often based on subjective assumptions such as number of data and the model performance is
model schematisations and are thus less objective analysed. In this paper, TEN models are used for
than stochastic TFN models. describing groundwater systems, but the results are

valiu for all sysiems that have identical response

An important aspect in the construction of TFN

. . L . characteristics,
maodels is the choice of the modeiling interval {i.e.
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In order to model time series independently of the
measuring interval (Le. the interval of the cutput
series}. Bierkens et al. [1999] suggest writing the
mode! in state space form, which allows the use of
the well-ksown Kalman fiiter. The Kalman filter
can then be combined with a maximum likelihood
criterion to estimate the parameters.

An objective analysis of the relationship between
the modelling interval and model performance
reguires the use of a time series that is completely
known, which can be achieved by using a
generated series. Another advantage of using
generated time series is that the effect of variable
time steps can be completely isolated from other
real-world influences. such as distance to the
nearest meteorological station or formulation of
precipitation excess. Therefore, in this study a
number of represeatative time series  were
generated by transferring input series into output
series, assuming the transfer function follows the
curve of a lognormal distribution. A stochastic
component was added to the series, which makes
the time series more similar to real time series.
Finally, the time series were resampled at several
intervals in order to determine the influence of the
measuring interval and the amount of measurement
data on the performance of the model.

The results of the calcuiations described in this
paper show that the choice of the modelling
interval of a TFN model should be based on the
sime scale of the system response and not on the

MA and AR operator of the noise model
respectively, both defined similarly to A(S).

The major drawback of (1) is that the modelling
interval has to be egual to or a multiple of the
interval of the cutput series. Therefore, the next
subsection describes how (1) can be rewritten into
state space form. Subsection 2.3 shows that this
representation of a TFN model enables the use of
the Kalman filter, which opens the way to reducing
the interval of a TFN model. Finally, subsection
2.4 describes how the groundwater time series
used in this paper were generated.

2.2 State Space Representation of TFN Model

The state space form is a powerful tool that allows
handling a wide range of time series models. The
general state space form is applied to a univariate
time series, ¥,.. This observable variable is related
to the mx1 vector %, known as the state vector, via
the measurement equation:

v, =Cx, +v,, t=1....T {2
where C, is a Idxm matrix and v, i3 a scalar,
representing  measurement  noise, which s
uncorrelated in time with mean zero and variance
r. In general, the elements of x, are not measured,
but are assumed to be described as a first-order
Markov process:

interval of the cutput time series. If the modelling
interval is larger than the time scale of the system

response, decreasing  the modelling interval
improves the performance of the model.

2.1 Introduction

The standard transfer function-noise model

iniroduced by Box and Jenkins [1970] is writien as

(1)

where y, is the output variable at time #; w, is the
input variable attime 1, 4, i3 a zero mean whits
noise process with variance o,’; B is a backward
shift — operator  defined Dby BEx = x4
O{Bl=wy +w B+ 58+ +m. B s the moving
average (MA} operator of the transfer model; &
are the WM& parameters up to  order g
A(B)=1-8B8~5.8—...~& B 15 the auto-regressive
(AR} operator of the transfer model: & are the AR
parameters up to order r, ©(B) and ©(B) are the
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X, =A X +8u+Gw, =L T {3)

where-A, is an-noan-matrix; B, is-an mxt vector; i,
is @ scalar representing the input; G is an mxl
vector; and w, is a scalar, representing the system

I'!OlSCWh!Ch T URCETEE At T e WA ey

zero and variance g. Equation (3} is referred to as
the state equation. For time-invariant systems, the
indices of the system matrices A, B, G, and C,
disappear.

Using (2) and (3), the TFN model of {i) can be
written in the following state space form:

A, D B, 0
x, =l S AR A 7R Wy (4
0 A, 0 G,
i =(Cs Cn)xt +yy {5}
where the system matrices are defined as
( d 1 0 0 (oo 1 0 0
g 0T g 0 T
A, = 1 0 A, =] : G
5:——2 ¢>;H !
5 o0 - 0 8, O - 0



B, ={mn @ o o }‘!‘
G, = (I & 8;!w2 9;\4 }T
C,=C,=(1 0 0}

where the parameters in A, A, B, and G, are
unknown and defined as in (1) For reasons of
convenience, this parameter set is termed o.

2.3 Kalman Filter and Parameter Estimation

Once a model has been written in state space form,
it is possible to use the Kalman filter. The Kalman
filter is a recursive procedure for computing the
optimal estimator of the state vector at time 1,
based on the information available ar time
[Jazwinsky, 1970]. This information cansists of the
observations up to and including y,. The Kalman
filter algorithm for state equation (3) consists of
the following equations:

Initial conditions

N—d

log L) =~ (logZr+1)

meloo Filay -

r=d+l

{14
logol{a)

where N i the number of time steps; and 4 is the
dimension of the state. The covariance matrix of
paramelter estimation errors is assumed o approach
the Cramer-Rac lower bound [Schweppe, 1973]:

R = 9% log L{u)

dada’ (1)

where Re 15 the Cramer-Rao fower bound.
2.4  Generation of Groundwater Time Series

Groundwater time series were generated by
transferring an input series, using a pre-defined

% and P rransfer function. In this study the input data

i 0 .. . . B
Time update (preuplt:at!(m excess} were obtained from daily
% =A% +Bu ) observations of the Royal  Netherlands
pootA ! Meteorological Institute at  De  Bilt, the
M, =AP,_ A" +GgG" N Netherlands. The time series ranges from July i,

Measurement update 1957 to December 3, 1999.

=y, - CX, (8) The most flexible approach for defining a transfer
£ =CM,CT+r (9) function ?s tq use a cc.)ntin‘uous function. W.hiie an
. exponential function is often used to describe the

K _—pAolsed m P it
TS T Sk response of @ hydrotopica system,—we wsed e
%, =% +Kn (1) probability density function of a lognormal
P =(I—K1C)M, (12) distribution to transfer precipitation excess into

where %, is the measurement update; %, is the time

-update; B, is the covariance matrix of the errorin ...

the measurement update:cov(x, —%,}; M, is the
covariance matrix of the error in the time update:
covix, —%,}; n, is the innovation, which is the
difference between observation and time vpdate; f;
is the innovation variance; K, is the Kalman gain;
and I is a unity matrix. If at time ¢ no observation
is available, %, =%, and P =M,. The variance
of the measurement noise, r, is assumed to be
known, while the variance of the system noise, g,
results from the Kalman filter algorithm when both
g and r are scaled by

(13)

s0 that g=var(w,)}/e?=land r=var{y,}/o?.
The parameter set ¢ can then be estimated by
evaluating the scaled log-likelihood function
{Harvey, 1S989]:
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groundwater recharge:

¢ “l(Lnrm,u )2

" roVan

where f and ¢ are the geometric mean and
standard deviation of the distribution, respectively,
and ¢ is a constant. An advantage of using (16)
over other exponential functions is the small
number of parameters.

Based on the input series and {16) many different
time series were generated. These time series have
different response times {(i.e. in {16) different
values for ¢ and g are used). Because the
conclusions for these time series are identical, in
this paper we only use one output time series to
demonstrate  the influence of the modelling
interval, This output series has been generated by
(i6), with ¢ = 10, o= 0.5, and y = 4. Figure |
shows the response function. In addition, a
stochastic component was added, which can be
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Figure 1. Transfer function for generation of
groundwater Hme series.

described by the following autoregressive (AR)
model:

ne=gn, +a, (7

where i, 15 the value of the stochastic component
at time f {days}); ¢= 0.99 is the AR-parameter; and
q, is a white {uncorrelated) noise process with
mean 4, = 0 and variance Uf = 1.64, whichis | %
of the variance of the deterministic component
(transferred precipitation excess). Figure 2 shows
the  resulting  groundwater  time  series,
Subsequently, a second outpul series  was
composed using the same transfer function and
{17), but now ¢ = 0. Finally, the generated
groundwater time series was split into two parts: a
calibration period from July 1, 1957 until
December 31, 1989 and a validation period from
January 1. 1990 untii December 31, 1999,

where Z, is the estimated deterministic component;
7, is the true deterministic component; N is the
number of model time steps: and 4 1s defined as in
{14). MAE represents the ‘fit’ of the deterministic
component of the TFN model and is thus impticitly

a measure of ‘fit’” of the transfer function.

»  Variance of the gain var[G], where the gain G
is represented by

> o
o -IZ 5,

The gain is equal to the value of the unit step
response at time ¢ = oo, The variance of the
gain is a measure of the overall parameter
accuracy. If ¢ = 10 in (16), & will approach 10
as well,

(19)

Section 3.2 describes the relation between the
modelling interval and both eriteria by evaluating
the results of TFN modelling of the groundwater
time series for four different cases:

I.  Quiput series A (¢ = 0), using Model 1:
modelling interval di,y equals measuring
interval di,. = {16, 20, ..., 70} days;

2. Output series A (¢ =0}, using Model 2:

Alpoq = 10 days, die, = {10, 20, ..., 70} days;

3. Quiput series B (¢ = 0.99}, using Model 1.

3. REBULTS

A1 Introduction

in order 1o evaluate the performance of the TFN
models two criteria are used:

© mean absolute error  (MALY  of  the
deterministic component, described as:

i N
T Ziz,mz,] {18)

t=d 4l

MAE =

d'?nxod - dfmea.v - { E-Ga 201 Sy 70} C‘myb,
4. Qutput series B (¢= 0.99), using Model 2:
At = 10 days, diye,s = {10, 20, ..., 70} days.

Section 3.3 describes the relation between the
amount of measurement data and the performance
of the model. This refation is important because,

“dueto the Timited 331’]3{?1 &f the dme $éries used in

this paper, a larger modelling interval implies a
smaller amount of meascrement data.

3.2 Modelling Interval
Figure 3 relates the criteria for model performance

(MAE and var{G]) to the measuring interval for
Model 1 as well as for Model 2. Figure 3a and 3b
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Figure 2. Generated time series of groundwater head {¢= (.99},
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Figure 3. Relation between measuring interval and (2) MAE, case 1 and 2; {b) var[G], case | and 2;
() MAE, case 3 and 4; and (d} var[G], case 3 and 4,

are based on Output series A (¢ = 0}, while Figure
Jc and 3d are based on Output series B (¢ = 0,99},
All diagrams clearly show that the performance of
Model 2 is always better than that of Model 1.
Especially when the noise is small with respect to
the deterministic component (3a and 3b), MAE and
var{G] benefit from the small modelling interval.
The reason for the better performance is that due o
the smaller modelling interval the real response
curve can be approximated better. Figure 3 also
shows that the performance of Model 2 is much
less sensitive to df,,, than the performance of
Model 1. The curve of Model 1 flattens from the

than the time of maximum response.

The better performance of Model 2 is visualised in
another way in Figure 4, where the real and the
modelled deterministic component of Qutput series
A are shown {(4a and 4¢) as well as the error of the

important conclusion from Figure 4 is that Model |

a0

= realdel comp.
e PG Dot Corp,

49 m

B Hort ﬁ i
¢ j%@? i di

»
Head (o)

is often not able to model the peaks of the output
series resulting in relatively large errors, whereas
Model 2 models the peaks very well. The same
holds for Qutput series B,

3.3 Amount of Measurement Data

The results reported in the previous section on the
relation between the modelling interval and model
performance are influenced by the amount of
available measurement data ndar. Therefore, this
section seeks to determine the relation between the

The relation between the amount of measurement
data and the performance of the model is shown in
Figure -5, where MAE and var[{] are plotied
against ndat for Output series A {¢ = 0). Figure 5a
clearly shows that MAE is rcather insensitive o
THdat! ORtYTWHER hdar I8 SmEl about 100-200
measurements) MAE changes. As a result, the
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Figure 4. {a) Real and modelied deterministic component, Model 1, dr,,, = 70: (b) Deterministic error,
Mode! 1, dtyes = 70; (¢) Real and modelled deterministic component, Model 2, di,,,.,, = 70:
(d} Deterministic error, Model 2, dt,,.., = 70
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Figure 5. Influence of amount of measurement data ndaf on model performance for different measurement
intervals, using Model 1 (a and b) and Mode! 2 (¢ and d), based on Caitput series A.

increase of MAE in Figure 3a is not significantly
influenced by the amount of data and is thus
compietely caused by an increase of the measuring
interval. The same holds for Model 2 (Figare 3c).
Again, MAE is more or less constant for ndar >
208 indicating that adding more data to the output
series does not cause the model fit to increase. On
the other hand, var[(G] does decrease when ndar
increases. Therefore, part of the increase of var[G)
in Figure 3b and 3d is caused by the difference in
the amount of available data. These conclusions
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